Multicore Speaker Cables LSCF..

- Versions in PVC and PUR for mobile outdoor applications
bigh-flexible types with PVC jackets
\rightarrow reelable, robust, cold-resistant, abrasion-resistant with PUR jackets

These high-performance speaker multicores were designed for connecting stationary and mobile multipath speaker systems. When used with normal speaker multipin connectors, they shorten setup times and avoid the danger of incorrect cabling. KLOTZ speaker multicores feature sophisticated core stranding technique and PVC outer jackets for maximum flexibility. Cables with polyurethane (PUR) jackets should be selected for uses involving high mechanical strain since they are extremely rugged, abrasion-resistant and flexible under extremely low temperatures and have outstanding winding characteristics.

- construction

Conductor	stranded bare copper					
Core Insulation	PVC, lead-free,different colors or numbered (LSCF840..)					
Jacket	PVC-flex, lead-free, black (..SW) or blue (..BL) resp. PUR, black (LSCF825P and LSCF840P)					
Order No.	Number of Cores	Cond. Construction	Jacket	$\begin{gathered} \varnothing \\ {[\mathrm{mm}]} \end{gathered}$	Weight [g/m]	Cu-Weight [g/m]
LSCF415BL	$4 \times 1.5 \mathrm{~mm}^{2}$	$30 \times 0.25 \mathrm{~mm}$	PVC	8.6	120	60
LSCF425SW /-BL	$4 \times 2.5 \mathrm{~mm}^{2}$	$50 \times 0.25 \mathrm{~mm}$	PVC	10.0	175	100
LSCF625SW	$6 \times 2.5 \mathrm{~mm}^{2}$	$50 \times 0.25 \mathrm{~mm}$	PVC	12.0	255	150
LSCF825SW	$8 \times 2.5 \mathrm{~mm}^{2}$	$50 \times 0.25 \mathrm{~mm}$	PVC	14.0	325	200
LSCF825P	$8 \times 2.5 \mathrm{~mm}^{2}$	$50 \times 0.25 \mathrm{~mm}$	PUR	13.2	300	200
LSCF440SW	$4 \times 4.0 \mathrm{~mm}^{2}$	$224 \times 0.15 \mathrm{~mm}$	PVC	12.0	255	160
LSCF840SW	$8 \times 4.0 \mathrm{~mm}^{2}$	$224 \times 0.15 \mathrm{~mm}$	PVC	16.6	520	320
LSCF840P	$8 \times 4.0 \mathrm{~mm}^{2}$	$224 \times 0.15 \mathrm{~mm}$	PUR	16.6	480	320
LSCF440260SW	$4 \times 4.0 \mathrm{~mm}^{2}+$	$224 \times 0.15 \mathrm{~mm}+$	PVC	15.6	450	280
	$2 \times 6.0 \mathrm{~mm}^{2}$	$343 \times 0.15 \mathrm{~mm}$				

electric

Insulation Resistance $\quad>100 \mathrm{M} \Omega \times \mathrm{km}$
Max. Operating Voltage 300 V
Test Voltage 2 kV
Conductor Resistance
$1.5 \mathrm{~mm}^{2}$
< $13.0 \Omega / \mathrm{km}$
$2.5 \mathrm{~mm}^{2}$
$<7.5 \Omega / \mathrm{km}$
$4.0 \mathrm{~mm}^{2}<4.5 \Omega / \mathrm{km}$
$6.0 \mathrm{~mm}^{2}<3.5 \Omega / \mathrm{km}$

other properties

Temperatur Range

PVC	$-25^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
PUR	$-40^{\circ} \mathrm{C} /+80^{\circ} \mathrm{C}$
Min. Bending Radius	$5 \times$ overall diameter

